Environmental Product Declaration

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019/AC:2021 for:

Burmatex[®]

MANUFACTURERS OF CREATIVE FLOORING

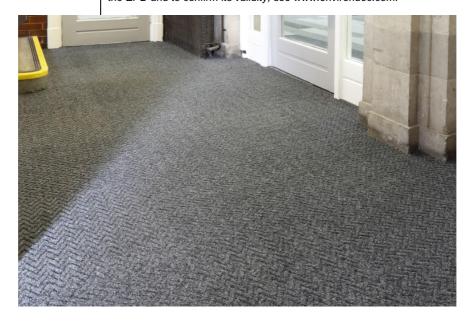
chevrolay 50, grimebuster 50 carpet tiles, all colour variations

95% Polypropylene fibre, 5% Recycled polyester fibre BioBase® recycled backing

Made in the UK

Programme: The International EPD® System, <u>www.environdec.com</u>

Programme operator: EPD International AB


Type of EPD: EPD of multiple products, based on the average results of the product

group

EPD registration number: | EPD-IES-0001840

Version date: 2025-09-22 Validity date: 2030-09-21

An EPD may be updated or depublished if conditions change. To find the latest version of the EPD and to confirm its validity, see www.environdec.com.

General information

Programme information

Programme:	The International EPD® System					
	EPD International AB					
Address:	Box 210 60					
Address.	SE-100 31 Stockholm					
	Sweden					
Website:	www.environdec.com					
E-mail:	info@environdec.com					

Accountabilities for PCR, LCA and independent, third-party verification **Product Category Rules (PCR)** CEN standard EN 15804 serves as the Core Product Category Rules (PCR) Product Category Rules (PCR): PCR 2019:14-version 2.0.1. Construction products. C-PCR-004 Resilient, textile and laminate floor coverings (EN 16810) (version 2024-04-30) (prolonged validity).UN CPC code(s): 272 Carpets and other textile floor coverings PCR review was conducted by: The Technical Committee of the International EPD® System. Chairs of the PCR review: Rob Rouwette (chair), Noa Meron (co-chair). See https://www.environdec.com/aboutus/the-international-epd-system-about-the-system for a list of members. The review panel may be contacted via the Secretariat www.environdec.com/contact. Life Cycle Assessment (LCA) LCA accountability: Maggie Wildnauer, WAP Sustainability, Inc. [www.wapsustainability.com] Third-party verification External and independent ('third-party') verification of the declaration and data, according to ISO 14025:2006, via EPD verification through: ☑ Individual EPD verification without a pre-verified LCA/EPD tool Third-party verifier: Matt Fishwick, Fishwick Environmental [https://fishwickenvironmental.com/] Approved by: The International EPD® System Procedure for follow-up of data during EPD validity involves third party individual verifier: ☐ Yes \boxtimes No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but published in different EPD programmes, may not be comparable. For two EPDs to be comparable, they shall be based on the same PCR (including the same first-digit version number) or be based on fully aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have identical scope in terms of included life-cycle stages (unless the excluded life-cycle stage is demonstrated to be insignificant); apply identical impact assessment methods (including the same version of characterisation factors); and be valid at the time of comparison.

Information about EPD owner

Owner of the EPD: Burmatex Limited

Contact: info@burmatex.co.uk

Description of the organisation: Burmatex® is one of the UK's leading designers and manufacturers

of contract carpet tiles and planks.

Name and location of production site(s): Victoria Mills, The Green, Ossett, WF5 0AN, UK.

 $\hbox{All Burmatex}^{\circledR} \ carpet/carpet \ tile/carpet \ plank \ ranges \ are \ made \ at \ its \ single \ UK \ manufacturing \ site \ in$

Ossett.

Product information

Product name: chevrolay 50, grimebuster 50 carpet tiles (all colours)

Product identification: Fibre Bonded

Product description: 50cm x 50cm tiles on a BioBase® backing, using 95% Polypropylene fibre, 5%

Recycled polyester fibre (all colours).

UN CPC code: 272 Carpets and other textile floor coverings

<u>Product lifespan:</u> 15 years <u>Product technical data:</u>

Description	Standard	Result
Total Weight	ISO 8543	4300g/m2 +/10%
Pile Thickness	ISO 1765	10.0mm
Total Thickness	ISO 1765	12.0mm
Wear Classification	BS EN 1307	Heavy Contract
Flammability	EN 13501-1	Bfl-S1
Impact Noise	BS EN ISO 10140-3:2010	Untested

Manufacturing Process

The product is manufactured at a UK facility using standard carpet tile production steps: fibre preparation, needling, application of backing, finishing, and cutting. All inputs and energy usage are calculated on an area-allocated basis.

More information:

This product is manufactured in the UK under ISO-compliant systems. A take-back scheme is available for end-of-life recovery of tiles. For details, visit www.burmatex.co.uk.

Content declaration

All values reported per functional unit for average product. Pigment is contained in the purchased fibres. Composition does not change for different color products.

Product components	Mass, kg	Mass %	Post-consumer material, Mass-%	Biogenic material, Mass-% and kg C/kg
Polypropylene fibre	1.08	25	0	0
Polyester fibre	0.06	1	1	0
Latex	0.35	8	0	0
Glass fibre	0.03	<1	0	0
PET	0.05	1	0	0
Limestone	2.13	50	0	0
Bitumen	0.60	14	0	0
Total	4.30	100	1	0

Packaging materials	Mass, kg	Mass-% (versus the product)	Mass biogenic carbon, kg C		
Pallet	0.113	2.6	0.06		
Cardboard	0.110	2.6	0.06		
Polyethylene	0.002	<0.1	0		
TOTAL	0.224	5.2	0.11		

Dangerous substances from the candidate list of SVHC for Authorisation	EC No.	CAS No.	Mass-% per functional unit
N/A	N/A	N/A	N/A

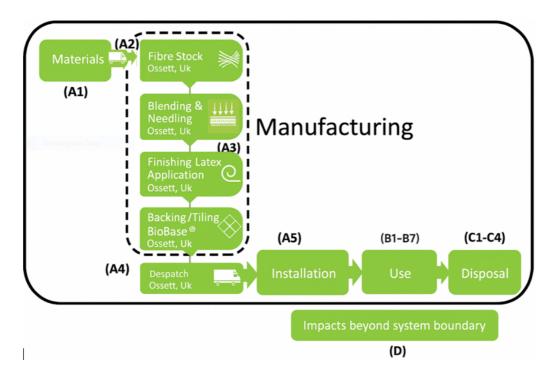
LCA information

Functional unit: One square metre of floor covering, weight 4.3 kg, conversion factor to mass 0.233.

Reference service life: 1 year Time representativeness: 2022

<u>Database(s)</u> and LCA software used: Ecoinvent 3.10, cut-off with SimaPro 9.6.

Description of system boundaries: Cradle to grave and module D.


Infrastructure and capital goods are not included in the LCA analysis, other than where this forms part of the background data in Ecoinvent. Cut off criteria were based upon input flows being less than 1% of the total individually, subject to the sum of all flows being less than 5% of the total, subject to verification that the impacts associated with such flows were not of a magnitude to affect the reported data significantly (less than 5% in total). Not included in the analysis is any losses due to broken pallets (pallet network used), any possible recycling of packaging from deliveries is not included and it is all treated as waste. Recycled limestone is treated as quarried limestone.

All site use of electricity, gas, water have been allocated on an area basis (m2). With the total area of production (m2) for the reference year divided by the use of electricity, gas, water for the site for the same reference year. Individual units of the factory are not separately metered. Wastes generated by the site are also allocated on an area basis for the production year analysed. Throughout the study recycled materials were accounted for via the cut-off method. Recovered energy from the incineration of product and packaging waste during installation is cut-off, i.e., no credit is given. Energy recovered from incinerated product at end-of-life is reflected with a credit in Module D.

System diagram:

Product Stage (Modules A1-A3)

Modules A1–A3 cover raw material supply, transport to the manufacturing site, and manufacturing. Recycled and conventional raw materials are considered. Electricity and gas consumption are allocated on an area basis, based on a low-carbon certified UK energy supply. Packaging and production waste are included.

An electricity grid mix based upon purchased electricity for 2022 was used. The primary energy mix is: renewables 94.30%, natural gas 4.30%, nuclear 0.40%, coal 0.50%, other fuels 0.40%. The renewables primary energy mix is: wind 50%, bioenergy 28%, photovoltaic 13%, hydropower 3.4%. GWP = $0.0620 \, \text{kgCO2e/kWh}$.

Construction Stage (Modules A4-A5)

A4 (Transport to site)

Scenario information	Unit (per FU)		
Fuel type and consumption of vehicle or vehicle type used	Long distance freight, lorry >32 metric		
for transport	ton, EURO6; Diesel		
Litre of fuel type per distance or vehicle type, Commission	20 litres/100 km		
Directive 2007/37/EC (European Emission Standard)	20 IIII es/ 100 KIII		
Distance	150 km		
Capacity utilisation (Including empty returns)	50%		
Bulk density	358 kg/m3		

A5 (Installation)

Scenario information	Unit (per FU)					
Ancillary materials for installation (specified by	90 ml solvent-free acrylic emulsion (30%					
material)	solids)					
Water use	0.00006 m3					
Other resource use	kg					
Quantitative description of energy type (regional mix) and consumption during the installation process						
Waste materials on the building site before waste processing, generated by the product's installation (carpet offcuts, edges, etc.)	3% (0.129 kg) to landfill					
Output materials (specified by type) as a result of waste processing at the building site e.g. of collection for recycling, for energy recovery, disposal (specified by route)	0.113 kg pallet (recycle) 0.110 kg cardboard (landfill) 0.002 kg polyethylene packaging (landfill)					

<u>Use Stage (Module B2 – Maintenance)</u>

The reference service life is 1 year and the total impacts associated with maintenance for 1 year are reported. For actual service life of the product multiply the values in the table by the appropriate number of years. Electricity for maintenance utilizes the standard UK grid energy mix: Offshore wind 16.6%, Onshore wind 16.6%, Bioenergy 5.7%, Photovoltaic 4.5%, Hydropower 3.2%, Gas 36.2%, Nuclear 16.1%, Coal 1.1%. GWP = 0.227 kgCO2e/kWh.

Scenario information Unit (per FU)	Unit (per FU)
Maintenance process	Vacuum cleaning
Maintenance cycle	Daily (250 days/year)
Energy input during maintenance	0.377 kWh/m2/yr
Deep cleaning	Twice a year
Ancillary materials for maintenance, e.g. cleaning agent, specify materials	0.12 kg non-ionic surfactant
Waste material resulting from maintenance	0.005 m3 wastewater
Net freshwater consumption during maintenance	0.005 m3

End-of-life Stage (Modules C1-C4)

Processes	Unit (per FU)
Distance transported (C2)	50 km
Collection process	4.3 kg collected separately
Recovery system	4.3 kg for energy recovery
Assumptions for scenario development	Thermal energy recovered with 80% efficiency, remaining bottom ash sent to landfill (C4)

Beyond System Boundary (Module D)

Module D includes the environmental benefit from recovered energy during incineration at end-of-life. Thermal energy is assumed to displace natural gas heating, with an energy recovery efficiency of 80%.

Modules declared, geographical scope, share of specific data (in GWP-GHG results) and data variation (in GWP-GHG results)

	Pro	duct st	age	prod	Construction process Use stage stage					End of life stage				Resource recovery stage			
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A1	A2	А3	A4	A5	В1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
Modules declared	Х	Х	х	х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х
Geography	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK	UK
Share of primary data used	8%				-	-	-	-	-	-	-	-	-	-	-	-	
Variation – products	0%					-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites		N/A	A (single	site)		-	-	-	-	-	-	-	-	-	-	-	-

The share of primary data is calculated based on GWP-GHG results. It is a simplified indicator for data quality that supports the use of more primary data, to increase the representativeness of and comparability between EPDs. Note that the indicator does not capture all relevant aspects of data quality and is not comparable across product categories.

Data quality assessment

Process	Source type	Source	Reference year	Data category
Manufacturing of product	Collected data	Burmatex	2022	Primary data
Polypropylene fibre	Database	Ecoinvent 3.10	2022	Secondary data
Latex	Database	Ecoinvent 3.10	2022	Secondary data

The geographical scope of the manufacturing portion of the life cycle is the UK. All primary data were collected from the manufacturer. The geographic coverage of primary data is considered very good. The geographical scope of the raw material acquisition is global. Customer distribution, site installation, and use portions of the life cycle is within the UK. Primary data represent all information for calendar year 2022. Using this data meets the PCR requirements. Time coverage of this primary data is considered very good. Primary data are specific to the technology the company uses in manufacturing their product. It is site-specific and considered of very good quality.

In selecting secondary data, priority was given to the accuracy and representativeness of the data. When available and deemed of significant quality, country-specific data were used. However, priority was given to technological relevance and accuracy in selecting secondary data. This often led to the

substitution of regional and/or global data for country-specific data. Overall geographic data quality is considered good. Data necessary to model cradle-to-gate unit processes were sourced from the mentioned EPDs and ecoinvent datasets. All datasets rely on at least one 1-year average data. Overall time coverage of the datasets is considered very good and meets the requirement of the PCR that all data be updated within a 10- year period. Technological coverage of the datasets is considered very good relative to the actual supply chain of the manufacturer.

Environmental performance

This EPD contains information about environmental impact, use of resources and waste production in the form of quantitative indicators.

All environmental data is given for the functional unit which is 1 m² of floor covering. While results represent multiple colors of product, dye is a negligible contributor and therefore variation between different colors of product is 0%.

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

For more information on calculating the primary energy characterisation factors see Annex 3 within the PCR. The model adopted is described in option B of the annex.

The results of the end-of-life stage (modules C1-C4) should be considered when using the results of the product stage (modules A1-A3).

Mandatory indicators according to EN 15804 [EF 3.1], results per 1 m² of floor covering

	overing											
Indicator	Unit	A1-A3	A4	A 5	B1	B2	B3-B7	C1	C2	C3	C4	D
GWP-total	kg CO ₂ eq.	4.98E+00	9.23E-02	5.25E-01	0.00E+00	3.98E-01	0.00E+00	0.00E+00	4.28E-02	5.09E+00	6.18E-03	-7.34E+00
GWP-fossil	kg CO2 eq.	5.38E+00	9.22E-02	1.16E-01	0.00E+00	3.97E-01	0.00E+00	0.00E+00	4.27E-02	5.09E+00	6.18E-03	-7.34E+00
GWP- biogenic	kg CO2 eq.	-3.99E-01	2.23E-05	4.08E-01	0.00E+00	1.51E-03	0.00E+00	0.00E+00	1.03E-05	3.03E-04	1.03E-06	0.00E+00
GWP-luluc	kg CO2 eq.	4.09E-03	3.83E-05	1.01E-04	0.00E+00							
ODP	kg CFC 11 eq.	1.16E-07	1.73E-08	3.25E-09	0.00E+00	7.48E-09	0.00E+00	0.00E+00	8.01E-09	5.24E-09	9.30E-11	-3.35E-07
AP	mol H+ eq.	2.12E-02	2.87E-04	1.66E-03	0.00E+00	1.94E-03	0.00E+00	0.00E+00	1.33E-04	1.16E-03	5.58E-05	-5.81E-03
EP- freshwater	kg P eq.	6.55E-04	7.51E-06	4.38E-05	0.00E+00	9.28E-05	0.00E+00	0.00E+00	3.48E-06	1.52E-05	3.14E-07	-1.33E-04
EP-marine	kg N eq.	4.67E-03	5.46E-05	1.18E-04	0.00E+00	9.36E-04	0.00E+00	0.00E+00	2.53E-05	6.63E-04	2.50E-05	-2.09E-03
EP- terrestrial	mol N eq.	4.69E-02	5.93E-04	1.13E-03	0.00E+00	4.91E-03	0.00E+00	0.00E+00	2.75E-04	5.65E-03	2.72E-04	-2.27E-02
РОСР	kg NMVOC eq.	2.14E-02	2.34E-04	5.10E-04	0.00E+00	1.81E-03	0.00E+00	0.00E+00	1.09E-04	1.42E-03	8.19E-05	-1.38E-02
ADPmineral s&metals*	kg Sb eq.	2.13E-05	2.46E-07	1.11E-06	0.00E+00	3.92E-06	0.00E+00	0.00E+00	1.14E-07	2.45E-07	2.21E-09	-2.55E-06
ADP-fossil*	MJ	1.56E+02	1.40E+00	2.04E+00	0.00E+00	8.65E+00	0.00E+00	0.00E+00	6.48E-01	9.39E-01	7.91E-02	-1.08E+02
WDP*	m3	2.74E+00	8.77E-03	8.03E-02	0.00E+00	1.40E+00	0.00E+00	0.00E+00	4.06E-03	2.45E-02	1.95E-04	-3.74E-02

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Note: All modules, are declared, but where there are nil entries, they are not included in the EPD to make the data more legible

Potential environmental impact – additional mandatory and voluntary indicators, results per 1 m² of floor covering

Indicator	Unit	A1-A3	A4	A5	B1	B2	В3-В7	C1	C2	C3	C4	D
GWP-GHG*	kg CO₂ eq.	5.38E+00	9.22E-02	1.16E-01	0.00E+00	3.97E-01	0.00E+00	0.00E+00	4.27E-02	5.09E+00	6.18E-03	-7.34E+00
РМ	Disease incidence	2.56E-07	6.52E-09	8.19E-09	0.00E+00	2.34E-08	0.00E+00	0.00E+00	3.02E-09	5.83E-09	1.53E-09	-3.08E-08
IRP***	kBq U235 eq.	2.35E-01	7.36E-03	1.44E-02	0.00E+00	1.11E-01	0.00E+00	0.00E+00	3.41E-03	1.88E-03	4.02E-05	-4.07E-02
ETP-fw**	CTUe	2.06E+01	8.54E-02	1.20E+00	0.00E+00	3.44E+00	0.00E+00	0.00E+00	3.96E-02	1.01E+01	3.73E-02	-4.82E+00
HTP-c**	CTUh	8.77E-09	3.60E-12	3.34E-09	0.00E+00	1.08E-08	0.00E+00	0.00E+00	1.67E-12	3.13E-08	3.11E-11	-1.88E-08
HTP-nc**	CTUh	4.89E-08	2.47E-11	1.48E-10	0.00E+00	3.66E-10	0.00E+00	0.00E+00	1.14E-11	8.88E-10	3.90E-12	-2.09E-09
SQP**	dimensionle ss	3.61E+01	1.22E+00	6.10E-01	0.00E+00	5.68E+00	0.00E+00	0.00E+00	5.65E-01	2.81E-01	9.44E-02	-1.71E+00

^{*}GWP-GHG - This indicator accounts for all greenhouse gases except biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. As such, the indicator is identical to GWP-total except that the CF for biogenic CO₂ is set to zero

Use of resources, results per 1 m² of floor covering

Indicator	Unit	A1-A3	A4	A 5	В1	B2	В3-В7	C1	C2	C3	C4	D
PERE	MJ	1.07E+01	2.02E-02	1.58E-01	0.00E+00	3.74E+00	0.00E+00	0.00E+00	9.37E-03	3.85E-02	6.53E-04	-4.54E-01
PERM	MJ	8.63E+01	0.00E+00	3.20E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	- 8.31E+01	0.00E+00	0.00E+00
PERT	MJ	9.70E+01	2.02E-02	3.04E+00	0.00E+00	3.74E+00	0.00E+00	0.00E+00	9.37E-03	- 8.30E+01	6.53E-04	-4.54E-01
PENRE	MJ	1.68E+02	1.52E+00	2.18E+00	0.00E+00	9.32E+00	0.00E+00	0.00E+00	7.03E-01	1.02E+00	8.41E-02	-1.20E+02
PENRM	MJ	8.32E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	- 8.32E+01	0.00E+00	0.00E+00
PENRT	MJ	2.51E+02	1.52E+00	2.18E+00	0.00E+00	9.32E+00	0.00E+00	0.00E+00	7.03E-01	- 8.21E+01	8.41E-02	-1.20E+02
SM	kg	6.00E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m3	6.38E-02	2.23E-04	2.95E-03	0.00E+00	5.58E-03	0.00E+00	0.00E+00	1.03E-04	0.00E+00	3.45E-04	-6.70E-03

Waste production and output flows, results per 1 m² of floor covering

Indicator	Unit	A1-A3	A4	A5	B1	B2	B3-B7	C1	C2	C3	C4	D
HWD	kg	5.88E-04	8.29E-07	4.91E-06	0.00E+00	1.47E-05	0.00E+00	0.00E+00	3.84E-07	5.68E-06	5.14E-07	-4.80E-04
NHWD	kg	3.09E-01	8.67E-02	1.91E-01	0.00E+00	4.95E-02	0.00E+00	0.00E+00	4.02E-02	9.29E-02	2.16E+00	-1.55E-01
RWD	kg	6.42E-05	9.78E-06	3.73E-06	0.00E+00	2.47E-05	0.00E+00	0.00E+00	4.53E-06	4.77E-07	9.32E-09	-1.03E-05

^{***} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

experience with the indicator.

***Disclaimer: This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Indicator	Unit	A1-A3	A4	A 5	B1	B2	B3-B7	C1	C2	C3	C4	D
CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MFR	kg	0.00E+00	0.00E+00	2.15E-01	0.00E+00							
MFER	kg	2.26E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.14E+00	0.00E+00	0.00E+00
EEE	MJ	1.35E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Information on biogenic carbon content

Biogenic carbon content	kgC	kgCO ₂	
In product	0.00	0.00	
In packaging	0.11	0.41	

Note: 1 kgC = 44/12kgCO₂

chevrolay 50, grimebuster 50 carpet tiles Additional environmental information

eco matters

Our heritage

Originally established in the UK in 1917 as J&F Burrows, we have been recycling for over 100 years. We began by recycling wool and cotton textile waste for resale to the textile industry, for use in the manufacturer of clothing.

With the advent of synthetic fibres, we quickly adapted to also recycle synthetic waste, eventually focusing solely on the recycling of nylon and polypropylene. With the development of a new type of carpet, needlefelt (now called fibre bonded), we saw an opportunity to use this recycled material to produce our own finished products.

The Burmatex[®] brand was created in 1976. For over 50 years, the careful selection, reprocessing and recycling of industrial synthetic waste has enabled us to produce sustainable products.

Today Burmatex® manufacturers a much broader range of products, including designer loop and low-level loop nylon carpet tiles. Still, the fundamental principles of recycling and reuse remain at the core of our operation and form the foundations of the eco_matters sustainability principles.

"Our single site operation in Ossett, UK, has been recycling for over 100 years."

To achieve optimal whole Life Costings, products must be correctly installed and maintained in accordance with manufacturers' instructions: https://www.burmatex.co.uk/technical/caring-for-your-carpet/

End of Life Take Back Scheme – To give your used tiles a new lease of life, please contact us for more details of our Recovery Take Back Service - 01924 262525 or www.burmatex.co.uk/contact-us/ for more information.

Abbreviations

Indicator	Abbreviation
Global warming potential (Fossil, biogenic, land use and transformation (LUT))	GWP
Depletion potential of the stratospheric ozone layer	ODP
Acidification potential	AP
Eutrophication potential	EP
Formation potential of tropospheric ozone	POCP
Abiotic depletion potential – Elements	ADPE
Abiotic depletion potential – Fossil resources	ADPF
Water scarcity potential	WSP
Primary energy resources – Renewable (use as energy carrier)	PERE
Primary energy resources – Renewable (use raw materials)	PERM
Primary energy resources – Renewable (total)	PERT
Primary energy resources – Non-renewable (use as energy carrier)	PENRE
Primary energy resources – Non-renewable (use raw materials)	PENRM
Primary energy resources – Non-renewable (total)	PENRT
Secondary material	SM
Renewable secondary fuels	RSF
Non-renewable secondary fuels	NRSF
Net use of fresh water	NUFW
Hazardous waste disposed	HWD
Non-hazardous waste disposed	NHWD
Radioactive waste disposed	RWD
Components for re-use	CRU
Material for recycling	MFR
Materials for energy recovery	MFER
Exported energy, electricity	EEE
Exported energy, thermal	EET
Particulate Matter emissions	PM
Ionizing radiation, human health	IRP
Eco-toxicity - freshwater	ETP-fw
Human toxicity, cancer effect	HTP-c
Human toxicity, non-cancer effects	HTP-nc
Land use related impacts/Soil quality	SQP

chevrolay 50, grimebuster 50 carpet tiles References

General Program Instructions of the International EPD® System. Version 5.0.1

PCR 2019:14, version 2.0.1. Construction products (2025-06-05).

PCR 2019:14-c-PCR-004 Resilient, textile and laminate floor coverings (EN 16810) (version 2024-04-30).

EN 15804:2012+A2:2019/AC:2021 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

JRC, EN15804 Reference Package (EF 3.1). February 2023.

ISO 14025:2006 Environmental labels and declarations — Type III environmental declarations - Principles and procedures.

PRé Sustainability. SimaPro 9.6, 2025 [Software].

Renuables Ltd. LCA Report – Burmatex. 2025-01-09.

WAP Sustainability. Life cycle assessment Burmatex Annex to LCA Report – BURMATEX by Renuables Ltd. 2025-09.

Weidema, Bo & Bauer, Christian & Hischier, Roland & Mutel, Chris & Nemecek, Thomas & Reinhard, Juergen & Vadenbo, Carl & Wernet, G.. (2013). Overview and methodology. Data quality guideline for the ecoinvent database version 3.

Version history

Version	Date	Differences from previous versions						
1.0	2020-02-03	Original version of EPD						
2.0	Current	Previous version expired; updated to PCR 2019:14-version 2.0.1						